Spectroscopic studies of photosystem II in chlorophyll d-containing Acaryochloris marina.
نویسندگان
چکیده
Photosystem II (PSII) electron transfer (ET) in the chlorophyll d-containing cyanobacterium Acaryochloris marina (A. marina) was studied by time-resolved electron paramagnetic resonance (EPR) spectroscopy at room temperature, chlorophyll fluorescence, and low-temperature optical spectroscopy. To maximize the ability to measure PSII ET in the intact cells of this organism, growth conditions were optimized to provide the highest specific O(2) activity and the instrumental parameters for the EPR measurements of tyrosine Z (Y(Z)) reduction were adjusted to give the best signal-to-noise over spectral resolution. Analysis of the Y(Z)(*) reduction kinetics revealed that ET to the oxygen-evolving complex on the donor side of PSII in A. marina is indistinguishable from that in higher plants and other cyanobacteria. Likewise, the charge recombination kinetics between the first plastoquinone acceptor Q(A) and the donor side of PSII monitored by the chlorophyll fluorescence decay on the seconds time scale are not significantly different between A. marina and non-chlorophyll d organisms, while low-temperature optical absorption spectroscopy identified the primary electron acceptor in A. marina as pheophytin a. The results indicate that, if the PSII primary electron donor in A. marina is made up of chlorophyll d instead of chlorophyll a, then there must be very different interactions with the protein environment to account for the ET properties, which are similar to higher plants and other cyanobacteria. Nevertheless, the water oxidation mechanism in A. marina is kinetically unaltered.
منابع مشابه
Cationic state distribution over the chlorophyll d-containing P(D1)/P(D2) pair in photosystem II.
Most of the chlorophyll (Chl) cofactors in photosystem II (PSII) from Acaryochloris marina are Chld, although a few Chla molecules are also present. To evaluate the possibility that Chla may participate in the P(D1)/P(D2) Chl pair in PSII from A. marina, the P(D1)(•+)/P(D2)(•+) charge ratio was investigated using the PSII crystal structure analyzed at 1.9-Å resolution, while considering all pos...
متن کاملArtificially produced [7-formyl]-chlorophyll d functions as an antenna pigment in the photosystem II isolated from the chlorophyllide a oxygenase-expressing Acaryochloris marina.
Acaryochloris marina, a chlorophyll (Chl) d-dominated cyanobacterium, is a model organism for studying photosynthesis driven by far-red light using Chl d. Furthermore, studies on A. marina may provide insights into understanding how the oxygenic photosynthetic organisms adapt after the acquisition of new Chl. To solve the reaction mechanism of its unique photosynthesis, photosystem (PS) II comp...
متن کاملThe thermodynamics and kinetics of electron transfer between cytochrome b6f and photosystem I in the chlorophyll d-dominated cyanobacterium, Acaryochloris marina.
We have investigated the photosynthetic properties of Acaryochloris marina, a cyanobacterium distinguished by having a high level of chlorophyll d, which has its absorption bands shifted to the red when compared with chlorophyll a. Despite this unusual pigment content, the overall rate and thermodynamics of the photosynthetic electron flow are similar to those of chlorophyll a-containing specie...
متن کاملIdentification of the primary electron donor in PS II of the Chl d-dominated cyanobacterium Acaryochloris marina.
The primary electron donor of photosystem (PS) II in the chlorophyll (Chl) d-dominated cyanobacterium Acaryochloris marina was confirmed by delayed fluorescence (DF) and further proved by pigment contents of cells grown under several light intensities. The DF was found only in the Chl a region, identical to Synechocystis sp. PCC 6803, and disappeared following heat treatment. Pigment analyses i...
متن کاملTime Resolved Absorption Spectroscopy for the Study of Electron Transfer Processes in Photosynthetic Systems
Transient absorption spectroscopy was used to study light induced electron transfer processes in Type 1 photosynthetic reaction centers. Flash induced absorption changes were probed at 800, 703 and 487 nm, and on multiple timescales from nanoseconds to tens of milliseconds. Both wild type and menB mutant photosystem I reaction centers from the cyanobacterium Synechocystis sp. PCC 6803 were stud...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 44 33 شماره
صفحات -
تاریخ انتشار 2005